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Executive Summary
In the last years the continuing trend of shrinking semiconductor devices led to the

discovery of single electron transistors (SETs) in which charge transport is governed by
the Coulomb interaction of individual electrons. SETs in semiconductor host crystals are
termed quantum dots or ‘artificial atoms’, due to the discrete excitation spectra observed
in transport and microwave spectroscopy. A typical quantum dot diameter is by now of
the order of 50 – 100 nm, containing a tunable number of 5 – 50 electrons. The main
focus of research so far was taming the static dot-dot interaction and of the influences of
their micro-environment. Naturally, it is now of prime importance to study the dynamics
of these systems, since only a detailed understanding will allow to build ultrafast
electronic devices functioning with only a few electrons.

By building quantum dots containing only about 15 electrons we were able to
selectively address excited states in transport spectroscopy. By combining these classical
methods with a newly developed wide band millimeter wave spectrometer, we achieved
revealing the population dynamics of these excited states. This allows us by now to not
only probe but also design the electron dynamics in these artificial structures. In this
report, we review the main accomplishments of this project, with the details addressed in
the appendices containing papers published with support from the sponsoring agencies.
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Microwave Spectroscopy on Quantum Dots
In the last year, we fabricated several quantum dot systems and built a fully

operational ultra wide band spectrometer from two single non-linear transmission lines.
The dots were characterized by low temperature measurements (T ~ 25 mK), showing
clearly excited states. In preliminary studies on coupled dot systems, we already found
manifestation of large tunnel splitting. Finally, the spectrometer was applied for probing
single quantum dots containing only ~15 electrons. By using strobe pulses with a typical
duration of ~100 psec, we resolved charging of the ground and excited states of these
dots. This gives us full control of the dynamics of the charging dynamics and dot’s
internal dynamics of shuffling electrons.

Specific accomplishments included:
• Microwave spectroscopy on a coupled dot applying conventional microwave

spectrometry [1]
• Measurements on a single quantum dot with a preliminary setup [2]
• Applied the fully integrated non-linear transmission line spectrometer to

measurements on a single quantum dot operated in the few-electron limit [3]

Conclusions and Future Directions
We successfully built, tested and applied a fully integrated ultra wide band

spectrometer for investigating the dynamics of few-electron quantum dots. The
spectrometer covers the frequency range of 20 – 400 GHz with sub-10 Hz resolution.
Functioning of the new spectrometer was first tested on bolometer circuits enabling an
estimate of the total emission power. We then realized a single few-electron quantum dot
and performed transport experiments at low temperatures. Combining transport and our
unique millimeter wave spectroscopy allowed us to study the dynamics of the single
electrons confined in the quantum dot. We want to further apply this technique for
studying the dynamics of single electrons in coupled quantum dots. The resolution
already achieved for single dots should allow us to reveal the interaction processes of
these artificial molecules with extremely high resolution.
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Executive Summary 
 
The use of ultrafast semiconductor devices demands the development of  adequate 

sampling circuits. The smallest transistors realized today, so called quantum dots, contain 
only 20 - 200 electrons and are built with feature sizes below 50 nm. The switching times 
of electrons in these quantum dots, however, are not understood in detail, since no 
appropriate spectroscopic tool was available so far.  

 
We have developed such a tool, which should allow us in the near future to probe  

electronic states in single and coupled quantum dots. This tool is a wideband millimeter 
wave spectrometer operating in the frequency range of 1 - 400 GHz with sub-Hz 
resolution. In the on-going work we realized a wideband millimeter wave spectrometer in 
a compact design: The core of this spectrometer is formed by two phase locked non-
linear transmission lines (NLTLs) as shown in Fig. 1. These two ultrafast circuits 
produce beats of radiation with frequency components up to 400 GHz. The output of the 
two sources is coupled by coplanar wave guides and fed into a slot antenna radiating into 
free space via a silicon hemisphere on the back plane of the circuit. Although impedance 
matching for the whole circuit is of great importance, we are still able to detect nW 
output power due to the immense sensitivity of the quantum dots used in this experiment.  



 

 
Fig. 1: The wideband millimeter wave spectrometer: (a) Two nonlinear transmission 

lines (NLTLs) integrated in the power combiner are fed through ports #1 and #2 with 
microwave radiation. (b) View from below with the silicon lens on the circuit backside. 
(c) Close-up of one of the NLTLs.  

 
In this report, we briefly review the status of this project, with the details addressed 

in the paper. More results through the coming final half of the year are expected as we 
bring the first NLTL spectrometer into action on quantum dots with support both from 
this program and from the German ministry for science and technology 
(Bundesministerium für Wissenschaft, Forschung und Technologie, BMBF). 

 

 
 
 
 
 
 



Wideband Millimeter Wave Spectrometer 
 
In preliminary experiments without the NLTLs with a small single dot containing 

about 25 electrons, we found that tracking single electron tunneling under millimeter 
wave  radiation with two phase locked synthesizers allows us to monitor excited states in 
the nonlinear transport regime [Qin99]. In this case we applied an identical setup as 
planned for the NLTL-spectrometer, except that we removed the NLTLs. Hence, we 
basically obtained a modulated continuous wave radiation being radiated onto the 
quantum dot under investigation, where the energy of the millimeter wave radiation was 
on the order of 10 - 40 GHz, while the signal is modulated with 1 - 10 kHz.  

 
The obtained spectra are then compared in detail to the ones found in dc transport 

spectroscopy. This allows us to differentiate between microwave induced states and 
slowly decaying ground states. However, this method has a considerable disadvantage 
compared to the NLTL spectrometer in that it does not allows time resolved 
measurements. This is possible now with the pulsed output of the NLTLs with sub-Hz 
resolution.  

  
Specific accomplishments included: 
• Developed first compact NLTL spectrometer (see Fig. 1) 
• Measurements with NLTL spectrometer on bolometers for calibration purposes  
• Characterized quantum dots with rump NLTL spectrometer [Qin99] 
 

 

Conclusions and Future Directions 
In the next future we plan to apply this spectrometer to measurements on single and 

coupled quantum dots. This will elucidate the intricate dynamics of single electrons in 
these few electron systems. In particular we hope to determine the relaxation times of 
excited states directly and to analyze phase coherent relaxation processes. Moreover, we 
plan to extend our setup by using synthesizers capable of generating output frequencies 
in the range of 10 MHz to 50 GHz and thus the frequency range of operation of the 
NLTLs to above 500 GHz. 
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